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A B S T R A C T   

Metamaterials with bandgap features can block wave propagation in specific frequency ranges and thus have 
wide applications for vibration mitigation and noise reduction. In this study, we renovated the design of star- 
shaped metamaterial (SSM) to make it capable of producing lower and wider vibration bandgaps. Unlike 
traditional periodic truss structures in the literature, the designed SSM structure breaks the spatial symmetry, 
opening the degenerate points formed by the band folding effect, thereby producing extra bandgaps for vibration 
suppression. First of all, a finite element (FE) model of the SSM is established, and its band structures and vi-
bration transmittance are calculated. The preliminary result validated our hypothesis, demonstrating that the 
proposed SSM structure created additional bandgaps for suppressing low-frequency and broadband vibrations. 
Subsequently, the frequency response analyses are conducted using the spectral element method (SEM) and 
experimental test. The effects of the structural parameters on the bandgaps of the proposed SSM are studied. In 
addition, we further extended and generalized the band folding design concept. We showed that one can produce 
more bandgaps by designing high-order SSMs. In general, this study presents an approach for designing truss 
structures with broadband vibration suppression performance.   

1. Introduction 

Vibration suppression and noise reduction have always been chal-
lenging and pragmatic. In particular, low-frequency, ultra-low fre-
quency, and broadband vibration and noise control are cutting-edge 
issues that have attracted much research interest. In the past years, 
innovative approaches have been developed to tackle these challenges, 
such as using elastic metamaterials. Metamaterials are a unique type of 
periodic structure with exceptional low-frequency and broadband wave 
attenuation capabilities. Exploring the mechanical properties and the 
design of structural units of metamaterials are trending topics in this 
area [1–5]. Metamaterials presented as artificially designed composite 
material structures exhibit extraordinary physical properties that natu-
ral materials do not have. Researchers found that periodic elastic com-
posite media can create wave bandgaps to block mechanical and/or 
acoustic waves in specific frequency ranges. Within the bandgap, waves 
are inhibited from propagating, resulting in spatial isolation of the vi-
bration source and offering a novel dynamic design concept for vibration 

suppression. 
There exist two mechanisms for generating bandgaps, namely Bragg 

scattering (BS) and local resonance (LR) [6]. The structural periodicity 
mainly dominates the former one. When the wavelength of the incident 
elastic wave is close to the characteristic length of the structure, i.e., 
lattice constant, a strong scattering effect will happen. The local reso-
nances of microstructures mainly dominate the latter one. LR meta-
materials break through the limitation of lattice size-dependency. They 
can be designed in subwavelength scales to control wave propagation, 
thus providing a theoretical basis for controlling low-frequency vibra-
tion. Recently, Guo et al. [7] designed a broadband low-frequency 
sandwich metamaterial structure with a lattice truss core. Although 
the LR mechanism can generate low-frequency bandgaps, their complex 
structures often increase the manufacturing difficulty and cost. Besides, 
researchers have also developed different nonlinear LR metamaterials to 
lower the bandgap frequency ranges [8–10]. Xue et al. [11] utilized 
magnetorheological elastomers as resonators and combined them with 
periodic springs and levers to achieve broadband adjustment of 
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nonlinear bandgaps. Based on this, they designed an LR metamaterial 
plate with frequency feedback to realize the active control of bandgaps 
[12]. Tian et al. [13] designed springs with tunable nonlinear stiffness to 
realize nonlinear vibration and flutter suppressions. Based on that, they 
proposed nonlinear metamaterials improved with the cantilever reso-
nator by combining a rigid cantilever beam and a mass block, which can 
be used to suppress broadband vibration with multiple modes [14,15]. 
Besides, researchers introduced some innovative structures with unique 
properties into the design of LR metamaterials, including negative 
stiffness structures [16,17], membrane-type structures [18], and 
origami structures [19] etc., to obtain lightweight structures having 
exceptional vibration suppression performance. In brief, resonators need 
to be added to the LR metamaterials, which unavoidably changes the 
mechanical properties of the substrate structure. 

Star-shaped structures with double-negative characteristics have 
drawn the attention of many scholars. Chen et al. [20] demonstrated 
that star-shaped periodic structures possess negative Poisson’s ratios. 
Moreover, they exhibit high design flexibility, are lightweight, and have 
superior energy absorption efficiencies. In addition, they can generate 
low-frequency bandgaps and display extraordinary dynamic character-
istics due to their concave configurations. Meng et al. [21] analyzed the 
equivalent mechanical behavior and bandgap characteristics of 
star-shaped honeycombs. Their results showed the existence of much 
lower frequency bandgaps. Star-shaped structures belong to truss 
structures, typically comprised of slender beams and/or rods. Truss 
structures are widely used in industries because of their high stiff-
ness/strength, uniform internal force distribution, and excellent light-
weight properties. In the dynamic modeling of truss structures, it is 
essential to account for the axial force, torsional force, and transverse 
shearing force of the beam/rod elements to ensure accuracy. Various 
methods have been developed to study the bandgap characteristics of 
truss structures. Wu et al. [22,23] established dynamic models of 
two-dimensional (2D) and three-dimensional (3D) periodic truss struc-
tures using the spectral element method (SEM). The troughs presented in 
the frequency response curves in their results revealed the BS bandgap in 
the high-frequency region. Zuo et al. [24] verified the existence of vi-
bration bandgaps in planar periodic rigid frame structures using 
experimental testing methods. Lu et al. [25] designed functionally 
graded frame structures to produce wider bandgaps than traditional 
homogeneous truss structures. The transfer matrix method (TMM) is 
also a classic theoretical method for the dynamic modeling of periodic 
truss structures. The TMM method can be conveniently combined with 
Bloch’s theorem to analyze the dispersion relationship and identify 
bandgaps [26]. Moreover, Phani et al. [27] studied the plane wave 
propagation in infinite 2D periodic lattices using Bloch’s theorem. They 
used the finite element method (FEM) to model the unit cell of each 
lattice and obtained the band structures by solving the eigenvalue 
problem of wave propagation. The acoustic black hole theory has also 
been employed by scholars to design V-folded beam structures to ach-
ieve the coupling of flexural wave and longitudinal wave, which makes 
the elastic wave greatly attenuated [28]. 

In condensed matter physics, the discovery of the Hall effect has led 
to the development of topological matter physics [29]. Periodicity and 
Bragg scattering make the energy show a band distribution. The band 
structure of graphene is observed to be conical in its Brillouin zone [30], 
the intersection of the bands is defined as the Dirac point, and the 
dispersion near it is linear. Haladane and Raghu [31,32] used the 
Faraday effect medium to break the time inversion symmetry to open the 
Dirac point and obtain a bandgap. In addition, opening the band de-
generacy point can also be achieved by breaking the spatial symmetry 
[33]. Besides, He et al. [34] found that the band inversion was achieved 
by regulating the double Dirac points that were assumed to degenerate, 
and the acoustic quantum spin Hall effect was realized. The researchers 
realized the topological transformation process of the Dirac point from 
degeneracy to opening (band from opening to closing and then to 
opening) by adjusting the duty ratio in the unit cell of a 2D honeycomb 

lattice metamaterial. Inspired by the previous works, Zhang et al. [35] 
designed a 3D magnetoelastic topological insulator with controllable 
working frequency and wave propagation path by adjusting the applied 
magnetic field or prestress. They managed to break the spatial symme-
try, realized the topological phase transition, and opened the Dirac point 
to form an extra bandgap. Huang et al. [36] designed a multi-band to-
pological insulator by using the lattice superposition mechanism and 
summarized a general method for realizing multiple degeneracies in the 
center of the Brillouin zone. 

In summary, although the dynamics and bandgap behaviors of star- 
shaped structures have been studied by researchers, achieving low- 
frequency broadband vibration suppression by traditional periodic 
star-shaped structures remains a challenge. Therefore, this paper pro-
poses a novel star-shaped structure, referred to as star-shaped meta-
material (SSM), with each unit cell comprising two alternating 
substructures with different concave angles. The band structure and 
frequency response analyses demonstrate that the SSM structure can 
generate more bandgaps than traditional ones in the low-frequency 
regime for broadband vibration suppression. Subsequently, theoretical 
models are developed, and experimental tests are conducted to verify 
the correctness of the results by FEM. Based on the theoretical model, 
the effects of structural parameters and the folding order on the bandgap 
formation of the proposed SSM structure are also revealed. 

2. Design and mechanism of the proposed SSM 

The proposed SSM is composed of lightweight star-shaped truss 
structures and can generate extra bandgaps by breaking spatial sym-
metry. The design strategy utilized in this star-shaped structure presents 
a new design method for lightweight acoustic lenses, wave filters, and 
vibration isolation infrastructures [20,37]. This section describes the 
structural design of SSM. The band structures analysis shows that the 
proposed SSM can generate lower frequency and broadband bandgaps 
compared with the conventional one. The mechanisms of band folding 
and extra bandgap formation are explained. Additionally, vibration 
transmittance analysis is conducted to confirm the band structure 
results. 

2.1. Overview of the SSM structure 

The proposed SSM structure comprises periodically arranged unit 
cells, viz. representative volume elements (RVEs). The RVE consists of 
two star-shaped substructures with different concave angles. As shown 
in Fig. 1(a), each substructure consists of ten struts with the same 
elasticity, uniformity, and isotropy. The strut length of the first sub-
structure in the unit cell is denoted by L1, and the strut length of the 
second substructure is denoted by L2. The concave angles of the two 
substructures are denoted by α and β, respectively. Considering the 
geometric characteristics of the star-shaped structure, α and β take 
values between 45ºand 90º. Thus, the lattice constant of the SSM can be 
calculated as a = L1 × [1-cos(α)+sin(α)] + L2 × [1-cos(β)+sin(β)]. The 
square cross-sectional area A = b × b of the struts is shown in Fig. 1(b), 
where b denotes the side length. By periodically arranging unit cells in 
the x-direction, the schematic diagram of an infinite SSM can be ob-
tained, as shown in Fig. 1(c). 

2.2. Band structure analysis 

The SSM proposed in this paper consists of unit cells periodically 
distributed along the x-direction. By using FEM, which assumes that the 
band structure is calculated by the perfect phononic crystal structure 
with an infinite period, the dispersion relation of the SSM can be ob-
tained. For the one-dimensional (1D) lattice, there is no corresponding 
reduced Brillouin zone, the length of the primitive cell basis vector a is 
lattice constant a, and the length of the inverted lattice basis vector b is 
2π/a. For the unit cell with periodic boundary conditions in the x- 
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direction, the wave propagating in the lattice periodic medium is a plane 
wave modulated by the lattice periodicity based on the Floquet-Bloch 
theorem. The Bloch periodic condition can be applied to the two 
boundaries of the unit cell in the x-direction as 

u(m+ r) = u(m)e− ikxm (1)  

where u(m) represents the longitudinal displacement, m represents the 
position vector, r represents the basis vector of the lattice, i represents 
the imaginary number, kx represents the wave vector component along 
the x-direction. Therefore, by sweeping kx, the eigenvalue equation that 
relates the natural frequency and the wave vector can be obtained. The 
band structures can be plotted by deeming the natural frequency as a 
function of the wave vector and solving the corresponding eigenvalue 
problem. For the subsequent calculation and comparison of band 
structures, Fig. 2(a) and (b) respectively show diagrams of the tradi-
tional star-shaped structure monoatomic unit cell and diatomic unit cell 
with concave angle Φ, and Fig. 3(c) shows diagram of the SSM unit cell. 

Given the parameters in Table 1, the dispersion curves of the SSM are 
plotted in Fig. 3(d). Besides, given the same parameters as listed in 
Table 1, the monoatomic unit cells with Φ = 50º and Φ = 60º are also 
analyzed, and their dispersion curves are shown in Fig. 3(a) and (b). On 
this basis, we considered an enlarged unit cell (a diatomic unit cell) with 

Φ = 50º. From Fig. 3(c), it can be observed that the band folding phe-
nomenon occurs, and two degenerate Dirac points A and B are generated 
[38,39]. In fact, comparing Fig. 3(a) and (c), one can note that the bands 
are folded back due to the folding of the reciprocal space. Once we 
transform the enlarged unit cell into a real primitive one by making α∕=β, 
the degenerate points are opened in Fig. 3(d), and extra bandgaps are 
generated. Fig. 4 presents the symmetric modes of the SSM consisting of 
diatomic unit cells at the two degenerate points. Such band degeneracy 
leads to the appearance of the crossing points, and breaking the sym-
metry results in the opening of the degenerate points [36,40,41]. 

In detail, the band structure of the traditional star-shaped structure 
with diatomic unit cells has four branches within the specific frequency 
range, with its bandgap between the second and third branches ranging 
from 313.33 Hz to 373.06 Hz. For the proposed SSM, the original 
bandgap is widened, and two additional ones are generated, respectively 
above and below the original one. The two bandgaps range over 
80.83–92.87 Hz and 484.94–551.15 Hz, respectively. These preliminary 
results have shown the low-frequency and broadband characteristics of 
the bandgaps in the proposed star-shaped truss structures. These char-
acteristics could be advantageous for vibration reduction, particularly in 
scenarios where multiple low-frequency excitation sources are present. 

Fig. 1. Schematic of the (a) SSM unit cell, (b) cross-section of the struts, (c) infinite SSM structure.  

Fig. 2. Diagrams of (a) the monoatomic unit cell, (b) the enlarged (diatomic) unit cell, and (c) the diatomic unit cell of the proposed SSM.  
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2.3. Transmittance analysis 

Furthermore, we calculated the transmittance response of the pro-
posed SSM to verify the bandgap characteristics predicted by the band 
structure analysis. The sample SSM comprises eight unit cells and is 
modeled in the beam physical field in COMSOL, as shown in Fig. 5. Due 
to the non-negligible ratio of cross-section size to the length of each 

Fig. 3. Band structures of the monoatomic unit cell with (a) Φ = 50º and (b) Φ = 60º, the diatomic unit cell with (c) Φ = 50º and the SSM unit cell with (d) α = 50º 
and β = 60º. 

Table 1 
Material and structural parameters of the SSM.  

L1 (cm) L2 (cm) α (º) β (º) b (cm) E (GPa) ρ (kg/m3) ν 

1.8 1.8 50 60 0.2 2.2e9 1100 0.394  

Fig. 4. Modes of the diatomic unit cell with Φ = 50º at the two degenerate points.  

Fig. 5. The SSM model established in the beam physical field by COMSOL.  
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element in the proposed SSM and the presence of high-order modes in 
the high-frequency regime, structural shear deformation cannot be 
neglected. Hence, the struts are modeled as Timoshenko beam elements. 
The external harmonic excitation is applied on the left side of the SSM in 
the z-direction. The displacement response at the right end is detected 
during frequency sweeping. Transmittance ΓSSM is defined as [42] 

ΓSSM = 20 × log10
dFree

dClamped
, (2)  

where dFree and dClamped are, respectively, the displacements of the free 
and clamped ends in the transverse direction. 

Fig. 6 illustrates the frequency response of the SSM over the fre-
quency range from 0 to 450 Hz. It is worth noting that the transmittance 
curve exhibits three troughs, which correspond to the frequency ranges 
of 68–81 Hz, 214–274 Hz, and 406–430 Hz, respectively. These 
bandgaps align with the ones identified in the previous band structure 
analysis. However, there are errors in the width prediction. It is 
important to remember that the unit cell of the SSM was modeled using a 
solid physical field to calculate the dispersion relation in the previous 
section. Consequently, the discrepancy can be attributed to the utiliza-
tion of different physical fields for the band structure and transmittance 
analyses. Despite this disparity, both models demonstrate the occur-
rence of band folding and opening phenomena. 

3. Spectral element modeling 

Though the finite element method is versatile, its computational 
efficiency is relatively low, especially when one wants to extend the 
study into high-frequency ranges, and the mesh model needs to be 
refined to ensure convergence. Considering the SSM is constituted of 
beam and rod elements, the spectral element method is very suitable for 
modeling such simple structures with extremely high efficiency. In this 
section, a dynamic model of the SSM structure is established using the 
SEM, and the vibration transmittance is calculated and compared with 
the FEM results. Typically, the SEM models structural dynamics using a 
concept similar to the FEM based on assembling dynamic stiffness 
matrices. Unlike the FEM, the SEM considers the wave solution as an 
interpolation function dependent on the frequency [43]. When 
modeling the SSM structures, we primarily consider their axial and 
transverse deformations. 

The partial differential motion equation of the axially vibrating rod is 
described by [23] 

EA
∂2u(x, t)

∂x2 − ρA
∂2u(x, t)

∂t2 = 0, (3)  

where the axial displacement is defined as u(x, t), E represents Young’s 
modulus, and ρ is the mass density of the rod. The general solution to Eq. 

(3) can be assumed by 

u(x, t) =
1
N

∑N− 1

n=0
URn(x,ωn)eiωnt, (4)  

where URn(x, ωn) is the spectral component of the axial displacement, ωn 
represents the circular frequency. By substituting Eq. (4) into Eq. (3), 
one converts the governing equation into the frequency domain. 

EA
∂2URn

∂x2 + ω2ρAURn = 0. (5) 

The general solution can be written as 

URn(x,ωn) = B1e− ikLx + B2eikLx, (6)  

where kL = ω
̅̅̅̅̅̅̅̅
ρ/E

√
, B1 and B2 are the coefficients that are determined 

by the node displacement of the rod. UR1 and UR2 are used to represent 
the node displacements of the rod, which can be written as 

dR = [UR1 UR2 ]
T
= [UR(0) UR(L) ]T . (7) 

One can obtain 

URn(x) = NR1UR1 + NR2UR2, (8)  

where NR1(x, ω)= csc(kLL)sin(kL(L − x)) and NR2(x, ω)= csc(kLL)
sin(kLx) are the frequency-dependent shape functions. 

The axial force can be derived by the spectral representation [23] 

f (x, t) =
1
N

∑N− 1

n=0
H(x,ωn)eiωnt. (9) 

The relationship between the displacement and force in the fre-
quency domain can be described as 

H(x,ωn) = EA
∂URn(x,ωn)

∂x
. (10) 

The nodal forces at the two ends of the rod element can be expressed 
in matrix form as 

fc(ω) = [NR1 NR2 ]
T
= [NR(0) NR(L) ]

T
. (11) 

Therefore, one obtains 

SR(ω)dR = fc(ω), (12)  

where SR(ω) is the dynamic stiffness matrix of the rod element and can 
be written as 

SR(ω) =
EAkL

sin(kLL)

[
cos(kLL) − 1

− 1 cos(kLL)

]

. (13) 

The corresponding dynamic stiffness matrix of the beam element can 
also be derived by following similar procedures [23]. Usually, when the 
ratio of the beam’s cross-section size to its length is not extremely small, 
shear deformation becomes a significant factor to consider, and the 
Timoshenko beam theory needs to be used. 

The partial differential vibration equation of the Timoshenko beam 
element is described by 

κAG
(

∂θB(x, t)
∂x

−
∂2wB(x, t)

∂x2

)

= ρA
∂2wB((x, t)

∂t2 , (14)  

EI
∂2θB(x, t)

∂x2 + κGA
(

∂wB(x, t)
∂x

− θB(x, t)
)

− ρI
∂2θB(x, t)

∂t2 = 0, (15)  

where κ is related to the cross-section shape, G represents the shear 
modulus, A represents the cross-section area, I is the area moment of 
inertia of the beam cross-section, wB represents the transverse 
displacement, θB represents the rotational angle of the beam cross- 
section. The transverse displacement and rotation angle of a 

Fig. 6. The transmittance of the SSM containing 8 unit cells.  
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Timoshenko beam are given as follows: 

wB(x, t) =
1
N

∑N− 1

n=0
Wn(x,ωn)eiωnt, (16)  

θB(x, t) =
1
N

∑N− 1

n=0
Θn(x,ωn)eiωnt. (17) 

Substituting Eqs. (16)–(17) into Eqs. (14)–(15), the governing 
equations are transformed into 

κGA
(

∂2Wn

∂x2 −
∂Θn

∂x

)

+ ρAWnωn
2 = 0, (18)  

EI
∂2Θn

∂x2 + κGA
(

∂Wn

∂x
− Θn

)

+ ρIΘnωn
2 = 0. (19) 

The general solutions to Eqs. (18)–(19) are assumed to be 

Wn(x) = Re− ikx, (20)  

Θn(x) = γRe− ikx, (21)  

where R and γ are to-be-determined coefficients depending on ω. 
The characteristic equation can be obtained by inserting Eqs. (20)– 

(21) into Eqs. (18)–(19): 

k4 − ηk4
Fk2 − k4

F

(

1 −
ρI

κGA
ω2

)

= 0. (22)  

One can obtain four roots by solving Eq. (22) as follows: 

k1 = − k2 =
kF
̅̅̅
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ηk2
F +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

η2k4
F + 4

(

1 −
ρI

κGA
ω2

)√√
√
√
√

= kt, (23)  

k3 = − k4 =
kF
̅̅̅
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ηk2
F −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

η2k4
F + 4

(

1 −
ρI

κGA
ω2

)√√
√
√
√

= ke, (24)  

where kF =
̅̅̅̅
ω

√ ( ρ
E
)1

4, η = I
A + EI

κGA. Moreover, the coefficient γ is deduced 
as 

γq(ω) =
1

ikq

(
k2

q −
ρ

κG
ω2

)
, (q= 1, 2, 3, 4). (25)  

Thus, the general solutions to Eqs. (18)–(19) can be derived as the 
following form 

Wn(x,ω) = R1e− iktx + R2eikt x + R3e− ikex + R4eikex, (26)  

Θn(x,ω) = γ1R1e− ikt x + γ2R2eikt x + γ3R3e− ikex + γ4R4eikex. (27)  

The node displacement and rotation angle of the two ends of the beam 
are written as 

dB =

⎡

⎢
⎢
⎣

W1
Θ1
W2
Θ2

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

W(0)
Θ(0)
W(L)
Θ(L)

⎤

⎥
⎥
⎦. (28)  

The shear and bending moments are expressed as follows: 

Q = κGA
(

∂W
∂x

− Θ
)

, (29)  

M = EI
∂Θ
∂x

. (30)  

The node force of the beam can be written as 

fB =

⎡

⎢
⎢
⎣

Q1
M1
Q2
M2

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

− Q(0)
− M(0)
Q(L)
M(L)

⎤

⎥
⎥
⎦. (31)  

Then, the relationship between the node displacement and the nodal 
force is given by 

SB(ω)dB = fB, (32)  

where SB(ω) is the dynamic stiffness matrix of a Timoshenko beam 
element. 

By using the finite element assembly concept, the stiffness matrices 
of the beam and rod elements can be assembled to obtain the overall 
stiffness matrix of the SSM in the global coordinate system. Subse-
quently, the relationship between the node displacement and the node 
force of SSM can be obtained as 

F = SSSM(ω)U, (33)  

where SSSM(ω) is the global dynamic stiffness matrix of the SSM; F and U 
are the nodal force and displacement, respectively. By solving Eq. (33), 
the structural dynamic responses can be calculated. 

4. Experimental validation 

The SSM prototype designed in this work consists of a periodic array 
of unit cells along the x-axis, as shown in Fig. 2(c). The physical pro-
totype was 3D printed using Polylactic acid (PLA) material. The specific 
material and structural parameters are listed in Table 1. The sample 
prototype was designed with 6 unit cells to guarantee a strong period-
icity, making the bandgap easily detectable. Previous studies indicated 
that a minimum of 5~6 unit cells suffices to guarantee periodicity [44]. 
The decrease in the number of unit cells weakens the vibration sup-
pression ability but does not significantly influence the bandgap position 
[45]. Due to the complexity of the SSM structure and the relative 
fragility of PLA materials, fixtures are used to clamp both ends of the 
structure to prevent large deformation caused by gravity or bolt preload. 
The experimental setup, including a computer, an accelerometer, a 
shaker, a power amplifier, and a multi-channel data acquisition system, 
is shown in Fig. 7. During the test, the shaker generates an excitation, 
sweeping from 5 Hz to 450 Hz, to the right end of the SSM prototype. 
The accelerometer installed on the left side measures the output 
response. 

The frequency responses of the SSM structure, determined using 
numerical simulation, theoretical modeling, and experimental test, are 
compared in Fig. 8. It is clear from Fig. 8(a) that the results obtained 
using the SEM and FEM approaches are almost identical since both are 
modeled using the Timoshenko beam theory. The experimental result is 
shown in Fig. 8(b). There are three distinct troughs in the frequency 
range of 0–450 Hz, corresponding to the three bandgaps. Overall, the 
experimental result matches well with the theoretical prediction despite 
the abscissa unit in Fig. 8(b) being different from that in Fig. 8(a). 

The main reasons for the errors between the experimental and 
theoretical results of the SSM structure are encapsulated as  

(a) Initial structural deformation existed even when both ends were 
fixed. PLA materials are relatively soft, and due to the small cross- 
section, the slender structure is too fragile to maintain a hori-
zontal posture, i.e., slight static deformation occurred due to the 
gravity effect, resulting in an inevitable error. 

(b) Extending the structural periodicity enhances the vibration sup-
pression effect, i.e., deepening the trough of the corresponding 
bandgap in the frequency response curve. However, the fixture 
size and experimental conditions limited the number of cells in 
the manufactured physical prototype, thus weakening the 
bandgap effect detected in the experiment. 
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(c) Given the experimental conditions, factors such as the weight of 
the accelerometer and the stress on the wires likely influenced the 
vibration test to some extent. Therefore, the dynamics of the 
physical prototype cannot fully match the experimental one. 

5. Structural parametric study 

The geometry of an SSM is shaped by a few crucial structural pa-
rameters, including the strut length L2, the concave angles α and β be-
tween the horizontal strut and the inclined one, and the strut’s cross- 
section area A. Changing these parameters will affect the mechanical 
and dynamic properties of an SSM, as well as the degenerate point 
opening phenomenon in the band structure. Thus, by adjusting these 
parameters individually, we delve into studying how they affect the 
bandgaps regarding the width, position, and number. The SSM under 
investigation in this section consists of 8 unit cells, and the parametric 
study results are presented below. 

5.1. Effect of concave angle 

The SSM representative volume element (RVE) designed in this 
paper comprises two star-shaped substructures with different concave 
angles to open the degenerate points and produce more bandgaps. 
Therefore, the concave angle is the key factor that breaks the spatial 

symmetry of the structure. As a periodic structure, the SSM with α = 50◦

and β = 60◦ has identical bandgaps as that with α = 60◦ and β = 50◦ To 
analyze the effect of concave angles on the bandgap properties of SSM 
structures, it is sufficient to select either α or β for examination. In our 
study, we remained α of the first substructure constant and varied β of 
the second substructure. 

Fig. 9 displays the variation trend of the bandgaps of the SSM 
identified in transmittances when α = 50◦ and β progressively varies. 
Over the frequency range of 0–450 Hz, there is just one bandgap when β 
is identical to α, i.e., β = 50◦ No extra bandgaps are formed in this 
configuration since the SSM with β = 50◦ still follows a conventional 
design without the degenerate point opening phenomena. As β increases 
and becomes different from α, two extra bandgaps (labeled I and III) are 
produced below and above the original bandgap (labeled II) due to the 
degenerate point opening phenomenon. Moreover, the original bandgap 
II slightly moves toward the lower frequency region, getting broader and 
deeper. 

In addition, the bandgaps I and III also expand and shift toward lower 
frequency zones as β increases. These results differ from the bandgap 
characteristics of common periodic structures whose bandgaps usually 
get narrowed when shifting to the lower frequency zones [46]. Obvi-
ously, this phenomenon renders the proposed SSM more suitable for 
low-frequency broadband vibration suppression. It is worth noting that 
when β = 55◦, the two troughs corresponding to bandgaps I and III are 

Fig. 7. The complete experiment setup and the physical prototype.  

Fig. 8. Frequency response curves of the SSM consisting of 8 unit cells obtained by (a) SEM, FEM, and (b) experiment.  
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not noticeably apparent, which means that if the difference in concave 
angles between the two star-shaped substructures is small, the vibration 
suppression abilities of the two extra bandgaps are very limited. 

Overall, the vibration suppression performance of SSM is worst when 
the difference in concave angles between two substructures is the 
smallest (α = 50◦ and β = 55◦). Conversely, the greatest vibration sup-
pression effect is achieved when the difference in concave angles be-
tween the two substructures is the largest (α = 50◦ and β = 85◦). The 
bandgaps of the proposed SSM steadily move towards the low-frequency 
region and get broader as the difference in concave angles rises. 

5.2. Effect of strut length 

As previously indicated, the degenerate points were opened by 
setting two distinct concave angles of the neighboring substructures, 
which were crucial for the formation of extra bandgaps in the SSM. If the 
lengths of the struts in the two substructures of the RVE are different, we 
speculate that structural asymmetry can also be achieved, and extra 
bandgaps can also form. In order to investigate this feasibility, we 
analyze an SSM with α = β = 50◦ but having different L1 and L2 in this 
section. In particular, we set L1 = 1.8 cm in the first substructure and L2 
= 1.9 cm in the second substructure. It is found that only one extra 
bandgap appears below 450 Hz, as shown in Fig. 10. Interestingly, this 
phenomenon is different from those with different concave angles in the 
previous section. This is because, compared to the strut length, the 
concave angle is a more vital characteristic parameter of star-shaped 
truss structures, having a more substantial impact on spatial symme-
try. Still, the varied strut lengths in the two neighboring substructures 
changed the symmetry to a small extent. Thus, one extra bandgap is 
produced. 

In order to further analyze the effect of strut length on the bandgaps 
of the SSM, we continously varied L2 from 1.6 cm to 2.0 cm. The 
transmittance contour, as shown in Fig. 11, reveals how the bandgaps of 
the SSM change as L2 increases. It is shown that the first bandgap moves 
towards lower frequencies as L2 grows while its width remains relatively 
constant. This characteristic indicates the adjustability of the bandgap 
position. As for the second bandgap, it first narrows till it disappears, 
then re-emerges and gradually widens. This process refers to the closing 

and re-opening phenomena of the degenerate points. The second 
bandgap gets broader as the difference between L1 and L2 becomes 
greater. Moreover, as shown in Fig. 11, a deeper transmittance trough 
marked in red indicates a stronger vibration suppression effect. Due to 
the geometric relationship a = L1 × [1-cos(α)+sin(α)] + L2 × [1-cos(β)+
sin(β)], an increase in L2 actually causes the periodic SSM structure’s 
lattice constant to rise, which provides an explanation for the widening 
of the bandgap. 

5.3. Effect of strut cross-section 

This section investigates the influence of the cross-section area A of 
the strut. We intentionally alter the cross-section areas of the two star- 
shaped substructures within the RVE to break the structural symme-
try. In that case, significant mutations may occur in the connection zones 
of the struts, which can then easily lead to the deformation of the 
connection positions. Therefore, in this section, the cross-section area A 
of all substructures changes synchronously to maintain structural con-
tinuity, while other parameters are kept the same as those in Table 1, to 
explore the impact of changes in the cross-section areas of the struts on 
the bandgap characteristics of the SSM. Because the SSM is a truss 
structure composed of slender strut elements, any changes in the slender 
struts alter the dynamics. The adjustment parameter in this section is the 
cross-section side length b of the square cross-section strut, and the 
calculation results are presented in Fig. 12. It can be observed that all of 
the three bandgaps move toward high-frequency zones as b increases. 
The second bandgap slightly gets widened, while the widths of the first 
and third bandgaps remain almost unchanged. Overall, the locations of 
the bandgaps have a positive correlation with the cross-section size, and 
it is noteworthy to consider the parameters used in the context of 
lightweight application backgrounds. 

5.4. Effect of folding order 

Previous studies showed that two extra bandgaps are produced in the 
band structure of the SSM with an RVE having two different star-shaped 
substructures, e.g., varied concave angles. Hereinafter, we refer to the 
number of star-shaped substructures in an RVE as the folding order. 
According to this definition, one knows that the folding orders of the 
SSM structures studied in previous sections are two. Similar to the 
concept of synergetic coupling to increase mode distribution density for 
finally achieving broadband vibration suppression [47–49], we can 
speculate that more bandgaps will be generated if we construct the SSM 
having an RVE with multiple different star-shaped substructures, i.e., 
increase the folding order. To investigate the impact of the folding order 
on the vibration suppression performance of such truss structures, we 
designed SSM structures with third-folding and fourth-folding orders, as 
shown in Fig. 13, in which the numbers of different concave angles in a 

Fig. 9. The transmittance of the SSM with α = 50◦ and various β.  

Fig. 10. The transmittance of the SSM with L1 = 1.8 cm and L2 = 1.9 cm.  
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single SSM RVE are three and four, respectively. According to the band 
folding mechanism, increasing the number of unit cells in an RVE to 
three and four times will cause each band to fold twice and thrice, 
respectively. Each folding will produce a point, and a corresponding 

extra bandgap will appear due to the destruction of spatial symmetry. 
Since those bandgaps are not independently generated, they cannot be 
easily adjusted in a completely separate manner. 

We calculated the vibration transmittances of these high-order SSM 

Fig. 11. Effect of L2 on bandgaps of the SSM.  

Fig. 12. Effect of b on bandgaps of the SSM.  

Fig. 13. The RVE of the (a) third and (b) fourth-order band folded SSMs.  
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structures rather than band structures because previous research 
revealed that the increase of folding order may affect the depths of 
bandgap troughs, and transmittance plots can more easily capture these 
features [46]. The proposed SSM structures with third- and fourth-order 
folding are composed of eight RVEs, with one end fixed and the other 
free. The transmittance results of the two proposed SSM structures are 
presented in Fig. 14, from which it is noted that more degenerate points 
are opened with the increase of the folding order, leading to more 
bandgaps within the frequency range of 0–450 Hz. Better vibration 
suppression performance is also indicated by the bandgaps shifting to-
ward the low-frequency region and main bandgap troughs deepening. 
This phenomenon is beneficial to suppressing multiple vibration waves 
with spanned frequencies, which can be utilized to filter multiple signals 
in practice. It is also worth mentioning that several troughs corre-
sponding to the extra bandgaps caused by the band folding effect are 
pretty shallow. This indicates that the vibration suppression abilities of 
some bandgaps are relatively poor, a limitation attributed to the con-
straints of the band folding design strategy. 

6. Further discussion 

This work demonstrates that the band folding mechanism can be 
introduced in star-shaped metamaterials to produce more low-frequency 
bandgaps for broadband vibration suppression. The band folding design 
strategy is generic and can be employed and extended to other designs, 
such as metamaterials with acoustic black holes (ABHs) [28,47] and 
other multi-mode bandgap construction methods [50]. Moreover, 
though the design presented in this study is a 1D structure, it can be 
speculated that if one extends the design by well configuring a 2D 
pattern, a 2D SSM with broadband vibration suppression abilities in two 
directions will be achieved. 

The following presents a simple 2D example. Fig. 15 demonstrates 
the unit cell of a 2D star-shaped structure. The concave angle is Φ = 70◦, 
and the square-sectioned strut’s side length is 2 mm. Assuming the 2D 
pattern extends to infinity in both horizontal and vertical directions, 
Fig. 16(a) depicts the first Brillouin zone, and Fig. 16(b) shows the 
corresponding band structure. Due to the symmetry of the square unit 
cell, the analysis can be confined to the irreducible Brillouin zone (IBZ) 
in the shadow area. Moreover, since extremums are always on the zone 
boundary, one only needs to search along the boundary of the IBZ. As 
observed in Fig. 16(b), there is only one full band gap ranging over 
1012–1233 Hz. It implies that the effective vibration suppression 
bandwidth is about 221 Hz below 1500 Hz. 

Following the band folding strategy, we first consider an intention-
ally enlarged unit cell, as shown in Fig. 17(a). The enlarged unit cell 
contains four unit cells from Fig. 15 with identical parameters. Fig. 18(a) 
shows the corresponding band structure of the enlarged unit cell. It can 
be noted that more bands appear, and crossing points are found at the 

corner points of the IBZ, i.e., X and M. The crossing points are formed by 
the band folding mechanism we used in previous sections for the 1D 
SSM. However, there is still only one bandgap spanning the same fre-
quency range from 1012 Hz to 1233 Hz below 1500 Hz. 

We then convert the fake primitive unit cell shown in Fig. 17(a) into 
an authentic one, as shown in Fig. 17(b), by changing the strut’s side 
length of the two “atoms” at the anti-diagonal from 2 mm to 1.5 mm. 
This is the scheme we utilized in Section 5.3 for the 1D SSM. Fig. 18(b) 
presents the band structure of the newly obtained 2D SSM. Compared 
with Fig. 18(a), one observes that two more bandgaps appear below 
1500 Hz, with one below and the other above the original bandgap. By 
carefully inspecting the curve patterns at the IBZ corners (X and M), one 
can find that some crossing points are opened, which leads to the for-
mation of the two new full bandgaps. Those three bandgaps, respec-
tively, range over 408–437 Hz, 810–1136 Hz, and 1234–1387 Hz. 
Summing the three up yields a 508 Hz bandwidth for vibration sup-
pression, representing a 129.8 % improvement compared to the tradi-
tional one (Fig. 15 and Fig. 17(a)) without adopting the band folding 
mechanism. The transmittance analysis of the 2D SSM is not presented 
for redundancy, as it is well-known and can be found in numerous lit-
eratures that band structure analysis can well predict the transmittance 
response. The band structure analysis gives us confidence that this newly 
developed 2D SSM can achieve broadband vibration suppression. The 
other schemes in Section 5 can also be used to develop this 2D SSM, 
producing additional bandgaps for broadband vibration suppression. 

Fig. 14. The transmittances of the (a) third-order and (b) fourth-order SSMs.  

Fig. 15. Monoatomic unit cell of a 2D star-shaped metamaterial.  
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7. Conclusion 

This study has proposed and presented an SSM with low-frequency 
and broadband vibration suppression abilities. A diatomic unit cell is 
constructed based on the band folding mechanism, and the concave 
angle of one of the unit cells is changed as a geometric parameter to 
break spatial symmetry. The degenerate points are then opened to 
achieve multiple bandgaps for the SSM in the low-frequency range. An 
FE model has been built to investigate the bandgap characteristics of the 
proposed SSM. A theoretical model has also been established using the 
SEM. The FEM, SEM, and experimental results were compared for 

mutual validation. The effects of different structural parameters, 
including the strut length L2, concave angles β, and cross-section area A 
on the transmittance of the SSM, were analyzed. In addition, we further 
proposed the concept of high-order SSMs, and the effect of the folding 
order on the bandgaps of the SSM was also investigated. The key con-
clusions from the analyses are summarized as follows:  

• By breaking the spatial symmetry, the proposed SSM structure can 
produce extra bandgaps by opening degenerate points in the band 
structure. 

Fig. 16. (a) The first Brillouin zone and the irreducible Brillouin zone (shadow area); and (b) band structure of the 2D star-shaped metamaterial.  

Fig. 17. (a) Enlarged unit cell with the same parameters as in Fig. 15, (b) four-atomic unit cell with the anti-diagonal being modified.  

Fig. 18. (a) Band structure of the enlarged unit cell, (b) band structure of the four-atomic unit cell with the anti-diagonal being modified.  
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• FEM simulations, SEM calculations, and experimental tests have all 
been conducted to validate the formation of multiple bandgaps in the 
proposed SSM.  

• With the increase of the difference in concave angles between two 
substructures in each SSM RVE, the bandgaps of the SSM will get 
wider and move to the low-frequency zone. In addition, all the 
bandgaps of the SSM move to the high-frequency direction as the 
cross-section area A increases.  

• Suppose the concave angles of the two star-shaped substructures in 
an RVE are the same while the lengths of the struts are different. In 
this case, with a slight increase of L2, the SSM structure may only 
open one extra bandgap.  

• According to the high-order band folding strategy, as the folding 
order increases, the SSM can open up more degenerate points and, 
thus, generate more bandgaps. 

Furthermore, a 2D star-shaped metamaterial design based on the 
band folding strategy is showcased to extend the applications. By 
following a similar design scheme, the 2D SSM has also been found to 
produce extra bandgaps, which underscores the innovation and appli-
cability of the approach presented in this paper. 

In general, this work has presented a design strategy for periodic 
star-shaped truss structures to produce multiple bandgaps in the low- 
frequency range, which is beneficial for broadband vibration isolation 
and filtering applications. This concept based on the band folding 
mechanism can be universally implemented in designing other periodic 
structures, with careful attention given to accommodating different 
stiffness and bearing capacity requirements. 
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